Combining Reinforcement Learning with Information-State Update Rules
نویسنده
چکیده
Reinforcement learning gives a way to learn under what circumstances to perform which actions. However, this approach lacks a formal framework for specifying hand-crafted restrictions, for specifying the effects of the system actions, or for specifying the user simulation. The information state approach, in contrast, allows system and user behavior to be specified as update rules, with preconditions and effects. This approach can be used to specify complex dialogue behavior in a systematic way. We propose combining these two approaches, thus allowing a formal specification of the dialogue behavior, and allowing hand-crafted preconditions, with remaining ones determined via reinforcement learning so as to minimize dialogue cost.
منابع مشابه
Combining Reinformation Learning with Information-State Update Rules
Reinforcement learning gives a way to learn under what circumstances to perform which actions. However, this approach lacks a formal framework for specifying hand-crafted restrictions, for specifying the effects of the system actions, or for specifying the user simulation. The information state approach, in contrast, allows system and user behavior to be specified as update rules, with precondi...
متن کاملA Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem
Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...
متن کاملProblem solving with reinforcement learning
This thesis is concerned with practical issues surrounding the application of reinforcement learning techniques to tasks that take place in high dimensional continuous state-space environments. In particular, the extension of on-line updating methods is considered, where the term implies systems that learn as each experience arrives, rather than storing the experiences for use in a separate oo-...
متن کاملToward Nonlinear Local Reinforcement Learning Rules Through Neuroevolution
We consider the problem of designing local reinforcement learning rules for artificial neural network (ANN) controllers. Motivated by the universal approximation properties of ANNs, we adopt an ANN representation for the learning rules, which are optimized using evolutionary algorithms. We evaluate the ANN rules in partially observable versions of four tasks: the mountain car, the acrobot, the ...
متن کاملTwo Novel On-policy Reinforcement Learning Algorithms based on TD(lambda)-methods
This paper describes two novel on-policy reinforcement learning algorithms, named QV(λ)-learning and the actor critic learning automaton (ACLA). Both algorithms learn a state value-function using TD(λ)-methods. The difference between the algorithms is that QV-learning uses the learned value function and a form of Q-learning to learn Q-values, whereas ACLA uses the value function and a learning ...
متن کامل